- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Crust, Kevin_J (2)
-
Ghanbari, Reza (2)
-
Hwang, Harold_Y (2)
-
Khandelwal, Aarushi (2)
-
Xu, Ruijuan (2)
-
Balke, Nina (1)
-
Bellaiche, Laurent (1)
-
Carroll, John (1)
-
Chi, Miaofang (1)
-
Gopalan, Venkatraman (1)
-
Hazra, Sankalpa (1)
-
Holt, Martin (1)
-
KP, Harikrishnan (1)
-
Kim, Young-Hoon (1)
-
Liu, Rui (1)
-
Meyers, Cedric_J_G (1)
-
Muller, David_A (1)
-
Nabei, Yoji (1)
-
Patel, Kinnary (1)
-
Prosandeev, Sergey (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Khandelwal, Aarushi; Crust, Kevin_J; Ghanbari, Reza; Yu, Yijun; Xu, Ruijuan; Hwang, Harold_Y (, Advanced Science)Abstract Antiferroelectrics are a promising class of materials for applications in capacitive energy storage and multi‐state memory, but comprehensive control of their functional properties requires further research. In thin films, epitaxial strain and size effects are important tuning knobs but difficult to probe simultaneously due to low critical thicknesses of common lead‐based antiferroelectrics. Antiferroelectric NaNbO3enables opportunities for studying size effects under strain, but electrical properties of ultra‐thin films have not been thoroughly investigated due to materials challenges. Here, high‐quality, epitaxial, coherently‐strained NaNbO3films are synthesized from 35‐ to 250‐ nm thickness, revealing a transition from a fully ferroelectric state to coexisting ferroelectric and antiferroelectric phases with increasing thickness. The electrical performance of this phase coexistence is analyzed through positive‐up negative‐down and first‐order reversal curve measurements. Further increasing thickness leads to a fully ferroelectric state due to a strain relief mechanism that suppresses the antiferroelectricity. The potential of engineering competing ferroic orders in NaNbO3for multiple applications is evaluated, reporting significantly enhanced recoverable energy density (20.6 J cm−3at 35 nm) and energy efficiency (90% at 150 nm) relative to pure bulk NaNbO3as well as strong retention and fatigue performance with multiple accessible polarization states in the intermediate thickness films.more » « less
An official website of the United States government
